Interval edge-colorings of complete graphs

نویسندگان

  • Hrant Khachatrian
  • Petros A. Petrosyan
چکیده

An edge-coloring of a graph G with colors 1, 2, . . . , t is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of G are distinct and form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. For an interval colorable graph G, W (G) denotes the greatest value of t for which G has an interval t-coloring. It is known that the complete graph is interval colorable if and only if the number of its vertices is even. However, the exact value of W (K2n) is known only for n ≤ 4. The second author showed that if n = p2, where p is odd and q is nonnegative, then W (K2n) ≥ 4n − 2 − p − q. Later, he conjectured that if n ∈ N, then W (K2n) = 4n − 2 − blog2 nc − ‖n2‖, where ‖n2‖ is the number of 1’s in the binary representation of n. In this paper we introduce a new technique to construct interval colorings of complete graphs based on their 1-factorizations, which is used to disprove the conjecture, improve lower and upper bounds on W (K2n) and determine its exact values for n ≤ 12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval cyclic edge-colorings of graphs

A proper edge-coloring of a graph G with colors 1, , t  is called an interval cyclic t  coloring if all colors are used, and the edges incident to each vertex ( ) v V G  are colored with ( ) G d v consecutive colors by modulo t , where ( ) G d v is the degree of the vertex v in G . In this paper some properties of interval cyclic edge-colorings are investigated. Also, we give some bounds for...

متن کامل

On Interval Edge Colorings of Biregular Bipartite Graphs With Small Vertex Degrees

A proper edge coloring of a graph with colors 1, 2, 3, . . . is called an interval coloring if the colors on the edges incident to each vertex form an interval of integers. A bipartite graph is (a, b)-biregular if every vertex in one part has degree a and every vertex in the other part has degree b. It has been conjectured that all such graphs have interval colorings. We prove that all (3, 6)-b...

متن کامل

Complete Bipartite Graphs with No Rainbow Paths

Motivated by questions in Ramsey theory, Thomason and Wagner described the edge colorings of complete graphs that contain no rainbow path Pt of order t. In this paper, we consider the edge colorings of complete bipartite graphs that contain no rainbow path Pt. Mathematics Subject Classification: 05C15, 05C38, 05C55

متن کامل

Hajj Os Theorem for Colorings of Edge-weighted Graphs

Hajj os theorem states that every graph with chromatic number at least k can be obtained from the complete graph K k by a sequence of simple operations such that every intermediate graph also has chromatic number at least k. Here, Hajj os theorem is extended in three slightly diierent ways to colorings and circular colorings of edge-weighted graphs. These extensions shed some new light on the H...

متن کامل

Neighbor-distinguishing k-tuple edge-colorings of graphs

This paper studies proper k-tuple edge-colorings of graphs that distinguish neighboring vertices by their sets of colors. Minimum number of colors for such colorings are determined for cycles, complete graphs and complete bipartite graphs. A variation in which the color sets assigned to edges have to form cyclic intervals is also studied and similar results are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 339  شماره 

صفحات  -

تاریخ انتشار 2016